File No.11014/02/2021-QA

File No: 11014/02/2021-QA (e-file no.1238) Food Safety and Standards Authority of India (A Statutory Authority established under the Food Safety and Standards Act, 2006) (Quality Assurance Division) FDA Bhawan, Kotla Road, New Delhi – 110002

Dated: 8th September 2022

ORDER

Subject: Methods for testing of Fortificants (Iron, Folic Acid and Vitamin B12) in Fortified Rice - reg.

The Scientific Panel on methods of Sampling and Analysis has approved the following methods -

- i. Method for determination of **Iron** in Fortified Rice: **FSSAI.FR.16.001.2022. (Annexure-I)**
- ii. Method for determination of Folic Acid in Fortified Rice: FSSAI.FR.16.002.2022. (Annexure-II)
- iii. Method for determination of Vitamin B12 in Fortified Rice: FSSAI.FR.16.003.2022. (Annexure-III)

2. The food testing laboratories are hereby requested to use the aforesaid methods with immediate effect.

3. This issues with the approval of competent authority.

Enclosure: As above.

Digitally Signed by Sweety Behera Date: 08-09-2022 09:54:15 Reason: Approved

(Sweety Behera) Director (Quality Assurance Division)

To:

- 1. All FSSAI Notified Laboratories
- 2. All State Food Testing Laboratories
- 3. ED (QA/QC), FCI
- 4. CEO, NABL
- 5. Director DFPD/Quality control cell, Ministry of Consumer affairs, Food & Public

Distribution

Copy for information to:

- 1. PS to CEO, FSSAI
- 2. ED(CS), FSSAI
- 3. Advisor (QA), FSSAI
- 4. Advisor (S&S), FSSAI
- 5. Director/Incharge (FFRC), FSSAI
- 6. CITO, FSSAI To upload it on website

ISS SEE Inspiring Trust, Assuring Safe & NutriProversed of Main Maning of Hullis and Fandy Walker, Covernment of Hula	Determination of Iron in Fortified Rice					
Method No.	FSSAI.FR.16.001.2022	Revision No. & Date	0.0			
Scope	This method is applicable for the quantitative analysis of Iron in fortified rice.					
Safety & Precautions	 Concentrated Nitric Acid is highly corrosive and can cause irritation to the eyes, skin, and mucous membrane. Always add acid to water to prevent splattering from overheating and boiling. Clean-up spills promptly with appropriate materials. Handle only inside a fume hood Hydrogen Peroxide: Microwave operation involves a hot pressurized acid solution. Use appropriate personal protective equipment, face protection such as a laboratory coat, safety glasses, rubber gloves, and a fume hood. 					
Principle	Nitric acid, and hydrogen peroxide are added to the sample in microwave vessels, and the samples are digested using preprogrammed temperature control. The addition of hydrogen peroxide helps reduce carbon and nitrous oxide levels in the digestate. Analysis is performed by inductively coupled plasma (ICP)-MS. Polyatomic interferences with low mass elements are reduced or eliminated by analysis in He collision mode using kinetic energy discrimination. Quantitation of Fe is achieved essentially simultaneously by comparing the analyte–ISTD response ratios in the unknown samples with a					
Apparatus/Instruments	 standard curve constructed from the response ratios of calibration standards. 1. ICP MS.—With quartz spray chamber, quartz torch, Ni/Pt sample cone, Ni/Pt skimmer cone, autosampler, and printer. The ICP-MS must have collision/reaction cells. 2. Microwave digestor. —A commercial microwave designed for laboratory use at 0–300°C, with a closed-vessel system and controlled temperature ramping capability. Use manufacturer recommended vessels. 3. Analytical Balance (capable of weighing 0.0001 g) 4. Fume hood. 5. Repipetter: 50 mL. 6. Bottle-top dispenser. —PTFE; Adjustable volume 0.5–5 mL. 7. Volumetric pipets. —Class A, assorted sizes. 8. Digital pipets- 1 mL adjustable, to deliver 500 µL with accuracy 					
Materials and Reagents	 tolerance of better than 0.8% and precision of better than 0.2% RSD. 1. Methanol —99.99%, analytical reagent grade. 2. Nitric acid—Concentrated trace metal grade/Suprapure/ultrapure. 3. Hydrogen peroxide, 30%—ACS reagent grade. 4. Laboratory water—metal-free, organic-free, pyrogen-free, filtered 18 MV cm quality. 5. Argon gas—≥99.996% purity. 					

	6. Heliu	m gas—≥	99.9999% p	urity			
	7. Fe Sta	andard (97	74 mg/L)				
Preparation of standard solutions	 Preparation of intermediate stock solution* - 1 (100 mg/L) Pipette out 1.027 ml[#] of Fe standard (974 mg/L). Transfer to a 10 ml amber colored volumetric flask containing 2 m of Milli Q Water. Add 0.5 ml Nitric Acid. Add Milli Q Water and make-up to 10 ml. Mixed by using Vortex Shaker Mixer. # Volume of stock standard solution required for preparing the intermediat stock solutions of 100 mg/L will vary depending on the concentration of concentration of the Fe standard solution Preparation of calibration standard solutions Use Intermediate stock solution – 1 (100 mg/L) for preparing calibration standard solutions as mentioned in below Table. 						
	Cal. Standard Solution	ISS - 1 (100 mg/m L	VOL. OF ISS – 1 (ml)	VOL. OF NITRIC ACID (ml)	FINAL VOL. (ml)	FINAL CONC. (mg/mL (ppM)	
	LS 7	100	2.00	5	100	2.00	
	LS 6	100	1.50	5	100	1.50	
	LS 5	100	1.00	5	100	1.00	
	LS 4	100	0.50	5	100	0.50	
	LS 3	100	0.25	5	100	0.25	
	LS 2	100	0.10	5	100	0.10	
	LS 1 CAL : Ca	100	0.05	5	100	0.05	
	ISS: Intermediate Stock SolutionVOL : VolumeLS: Linearity SolutionNOTE: Use freshly prepared calibration Standard solutions daily for the						
Sample Preparation	 Weigh 0.25 g (± 0.02 g) of ground sample by difference. Transfer to Microwave Digestion Closed (MDC) Vessel. Add 2.0 ml of hot (60 °C) Milli-Q water. Add 1.0 ml Hydrogen peroxide. Add 5 ml of Nitric Acid. Loosely cap the vessel and keep at room temp for 5 min. to predit the sample. Seal the vessels and place into the rotor. Keep the vessel rotor in microwave digester and execute a heatin program equivalent to that shown in the Table below for total digester 						
	of the sar	o RA	MPING ΓAGE	HOLD TIM (Minutes)	E TEMP (⁰ C)	POWER (Watt)	

		1	01	20)	180	800	
		2	02	10		160	800	
		3	03	10		140	800	
		4	COOL DOWN			-	-	
				· ·	-			
	10. A	10. After digestion, place the vessels in a fume hood, unscrew the						
	ca	cap/venting nut slowly to gradually release pressure, and then completely						
	re	remove the cap.						
	11. 5	Slowly add	approximately	l0 mL Mill	i Q wate	er to the co	ntents of the	
		essel, swirl						
			ntents to a 50 mI	. volumetri	c flask a	ind make-u	p the volume	
	W	ith Milli-Q	water.					
	1 11	•	• , , •	1		ICD MC .		
Method of analysis		• •	propriate tuning					
	-		ivity in KED mo	de and/or r	eaction	mode acco	rding to the	
		rument des	•					
			e instrument to f					
			on curves that w				-	
		-	instrument type			•	-	
		-	ameters for anal	ysis using	Agilent	77001 (for	reference	
	only	y*).						
	a) Plasma Flow-Argon (15L /min)					/min)		
		Plasma co	ondition	b) Nebuli	zer pum	p uptake sp	beed (0.5 rps)	
				c) RF pov	ver 1550	watts		
	S/C Temperature 2°C							
		Uptake T	ime	40 Sec				
		Delay Ti	ne	40 Sec				
		Stabilize	Time	40 Sec				
		Nebulize	r Flow	1.0 ml/Mi	n			
		Desetion	C -11	ORS and	KED	with heliu	m flow:3.8	
		Reaction	Cell	ml/Min				
		Numbers	of Replicates	3.0				
		Detector'	s parameters	5 mV				
		Mode		Не				
		Recomm	ended mass for					
	Iron 56							
		TMP Rev	olution	n 100 %				
	Working							
		Auto	Mode	Contin	uous			
		conditions Wash Between runs						
	*The laboratory may use their own ICP-MS instrument parameters after					arameters after		
	appropriate optimization.							
	3. A	nalyze test	solutions using	an ICP-MS	S instrun	nent standa	rdized with the	

	indicated standard solutions.				
	 The order of analysis should be calibration standards, followed by rinse, 				
	blank check, check standard, control sample, sample, sample duplicate,				
	and, finally, a repeated check standard				
Calculation with units of	Sample concentrations are automatically calculated by the software using a				
expression	non-weighted least-squares linear regression calibration analysis to produce				
	a best-fit line: $y = ax + blank$				
	Note that, the sample blank is identical to the Cal Blk in this method and is				
	essentially zero because high-purity reagents are used				
	$(Fe) mg C \times Makeup volume$				
	$Iron \frac{(Fe) mg}{kg} = \frac{C \times Makeup volume}{Sample weight (g) \times 1000}$				
	C= concentration from instrument software				
	a) Carry out a regression analysis and calculate Regression coefficient (R^2)				
	by analyzing the calibration standards by fitting the data into a linear				
	regression curve, including zero as the response for the reagent blank.				
	Should be >0.99				
	b) The LOD and LOQ are determined by considering the S/N of 3 and 10, respectively, for the Iron in the matrix.				
	i. Limit of Detection = 4 mg/kg in with respective to the Sample.				
	i. Limit of Detection $= 4 \text{ mg/kg}$ in with respective to the sample. ii. Limit of Quantification $= 10 \text{ mg/kg}$ in with respective to the				
	Sample				
	c) Determine the recovery of Iron by the external spiking method at three				
	different spike levels (10, 20 & 30 mg/kg) in six replicates.				
	Calculate the recovery value using the following equation:				
	$Recovery(\%) = \frac{(A - B)}{C} \times 100$				
	where				
	A = the concentration of Iron in the spiked sample (mg/kg)				
	B = the natural content of Iron in the control sample (mg/kg)				
	C = the spiked concentration of Iron (mg/kg)				
Reference	AOAC 2011.14: Determination of Minerals and Trace elements in Milk				
	& Milk Products, Infant Formula and Adult Nutrition.				
Approved by	Scientific Panel on Methods of Sampling and Analysis				

Annexure-II

	Determination of Folic Acid (Vitamin B9) in Fortified Rice					
Authority of India Inspiring Trust, Assuring Safe & Nutritious Food Miniaty of Health and Family Welfare, Government of India						
Method No.	FSSAI.FR.16.002.2022	Revision No. & Date	0.0			
Scope	This method is applicable for		Folic Acid (Vitamin			
	B9) in fortified rice by using 1	LC-IM5/IM5.				
Safety and Precautions	Potassium hydroxide is caus	tic Contact with very high	th concentrations of			
Survey and Freedoms	sodium hydroxide can cause s					
	or lungs. Prolonged or repeate	•				
	with care.					
	Formic acid is a corrosive ch	emical and contact can se	everely irritate and			
	burn the skin and eyes with po		-			
	irritate the nose and throat. Us	; e				
	Acetonitrile: Avoid contact v or mist. Keep away from sour					
Principle	Extraction of folic acid using p	<u> </u>				
Timespie	using reverse phase liquid					
	spectrometry (LC-MS/MS).		-			
Apparatus/Instruments	1. Ultra-High Performance I					
	Spectrometer (LC-MS/MS	s), system equipped with	a quaternary gradient			
	pump, an auto sampler.	ble for weighing samples	s with accuracy up to			
	2. Analytical Balance, -Suitable for weighing samples with accuracy up to 0.0001 g.					
	3. Centrifuge 6000 rpm, hold					
	4. Volumetric Flasks-Class A					
	5. Micro Pipettes Capable of delivering from 100 -1000 µl, 20 -200 µl 100					
	 μl. of liquids. 6. Incubator shaker set at 37 ⁰C. 					
	7. Water bath at 55 $^{\circ}$ C.	0.				
	8. Column: C-18 1.8 μm, 2	.1×100 mm.				
	9. Sonicator					
	10. Vortex	- 1				
	11. Homogenizer with steel bl	ades.				
Materials and Reagents	1. Anhydrous Dipotassium H	ydrogen Phosphate(K ₂ H	PO ₄), LR Grade			
8	2. L-Ascorbic Acid, LR Grad	le				
	3. α-Amylase	a 1				
	 Potassium Hydroxide, LR Formic Acid, MS Grade 	Grade				
	6. Acetonitrile, MS Grade					
	7. Folic Acid (Purity>90%)					
Preparation of	a) Phosphate buffer (0.1 M)				
Reagents	1. Accurately weigh 17.4 g					
	2. Transfer it into 1000 ml					
	3. Add 200 mL MilliQ wat	ler				

	4. Sonicate for 15 minutes to dissolvelve.			
	5. Makeup with MilliQ water			
	b) Mobile phase -A (0.1% Formic acid)			
	1. Transfer 1 ml Formic acid into 1000 ml Volumetric Flask			
	2. Add Milli-Q Water to make up volume			
	3. Filter through 0.45 μ m filter			
	c) Mobile phase - B (100% acetonitrile)			
	1. Transfer 1000 mL Acetonitrile to mobile phase glass bottle and then			
	Sonicate.			
Preparation of	A. Preparation of stock Folic acid Standard (1000 mg/L)			
Standards	1. Accurately weigh 10 mg (\pm 0.1) of standard Folica			
	2. Transfer to 10 ml amber colored volumetric flask			
	3. Add 2 ml of 0.1 N Potassium hydroxide			
	4. Vortex for 2 min			
	5. Add Milli Q Water make-up to 10 ml			
	6. Store the Solution at $4 {}^{0}$ C in the dark.			
	B. Preparation of intermediate standard solution – 1 (100 mg/L)			
	1. Pipette out 1.0 ml of Stock Solution.			
	2. Transfer to a 10 ml amber colored volumetric flask containing 2 ml			
	of Milli Q Water.			
	3. Make-up the volume to 10 ml			
	4. Vortex for 2 minutes.			
	C. Preparation of intermediate standard solution - 2 (10 mg/L)			
	1. Pipette out 1.0 ml of intermediate standard solution – 1.			
	2. Transfer to a 10 ml amber colored volumetric flask containing 2 ml			
	of Milli Q Water.			
	3. Add Milli Q Water and make-up to 10 ml			
	4. Vortex for 2 minutes.			
	D. Preparation of intermediate standard solution – 3 (1 mg/mL)			
	1. Pipette out 1.0 ml of Intermediate standard solution -2 .			
	2. Transfer to a 10 ml amber colored volumetric flask containing 2 ml			
	of Milli Q Water.			
	3. Add Milli Q Water and make-up to 10 ml			
	4. Vortex for 2 minutes.			
	5. Use this solution for making the calibration standards			
	E. Preparation of standard solution - 4 (10 μg/L)			
	1. Pipette out 0.10 ml of Intermediate Standard Solution - 3			
	2. Transfer to 10 ml amber colored volumetric flask containing 2 ml of			
	Milli Q Water			
	3. Add Milli Q Water and make-up to 10 ml			
	F. Preparation of bracketing standard solution			
	Standard Solution – 4 (10 μ g/L) shall be used for Bracketing Standard			
	Solution.			
	Preparation of calibration standard solutions			
	1. Use Intermediate Standard Solution -3 (10 μ g/L) for preparing			
	Calibration Standard Solutions as mentioned in below Table.			

	CAL. STD. SOLUTI ON	ISS 3 (1000 μg/L)	VOL. OF ISS 3 (ml)	VOL. OF MILLI Q WATER (ml)	FINAL VOL. (ml)	FINAL CONC. (μg/L)
	LS 6	1000	0.40	9.60	10	40
	LS 5	1000	0.20	9.80	10	20
	LS 4	1000	0.15	9.85	10	15
	LS 3	1000	0.10	9.90	10	10
	LS 2	1000	0.05	9.95	10	5
	LS 1	1000	0.02	9.98		2
Preparation of Test Samples						
Chromatographic Conditions	Instrument: LC-MS/MS SpectrometerChromatographic and instrument Conditions : As detailed in below TabDetectorMass DetectorColumnT3 1.8 μm, 2.1*100mmRun time7 minColumn Temperature35 °CFlow rate0.25 ml/min					ow Table*

In	jection Volume	20 µl
M	Iobile Phase A	0.1% Formic Acid in Water
M	Iobile Phase B	Acetonitrile
Bu	uffer	Potassium Hydrogen Phosphate
Sc	ource Temperature	140 °C
M	IRM (Quantifier)	442.2 > 295.1
М	IRM (Qualifier)	442.2 > 176
Cl	E	12.00
C	V	40.00
	e-solvation emperature	450 °C
Sc	ource	ESI +ve

*The laboratory may use their own LC-MS/MS instrument parameters after appropriate optimization

Gradient Program

TIME	FLOW (ml/Min)	%A	%B
0.00	0.25	90	10
2.00	0.25	90	10
4.00	0.25	10	90
5.00	0.25	90	10
7.00	0.25	90	10

*The laboratory may use their own LC-MS/MS instrument parameters after appropriate optimization.

Method of Analysis/	Injection Sequence				
Batch Organization	SL.NO	NAME OF INJECTIONS	NUMBER OF INJECTIONS		
	1	Blank	2		
	2	Standard Solution - 3 (100%)	6		
	3	Blank	2		
	4	Linearity Solution (LS) - 1	1		
	5	Linearity Solution (LS) - 2	1		
	6	Linearity Solution (LS) - 3	1		
	7	Linearity Solution (LS) - 4	1		
	8	Linearity Solution (LS) - 5	1		
	9	Linearity Solution (LS) - 6	1		
	10	Blank	2		
	11	Sample Solution	1		

	12	Blank	2		
	13	Bracketing Standard Solution	1		
	TOTAL IN	JECTIONS	22		
	a) Carry o	ut a regression analysis and calculate Re	gression coefficient		
Calculation with units	· · ·	analyzing the calibration standards by f	U		
of expression		egression curve, including zero as the res	sponse for the reagent		
	blank.	C Maharan			
	Folic acid $\frac{\mu g}{kg} = \frac{C \times Makeup \ volume}{Sample \ weight (g)}$				
	C= Concentration obtained from instrument software				
	b) The LOD and LOQ are determined by considering the S/N of 3 and				
	10, respectively, for the folic acid signal in the matrix.				
	• Limit of Detection (5 μ g/kg) with respective to the Sample.				
	• Limit of Quantification $(10 \ \mu g/kg)$ with respective to the sample.				
	c) Determine the recovery of folic acid by the external spiking method				
	at three different spike levels (10, 25, 50 and 100 μ g/kg) in six				
	replicates. Calculate the recovery value using the following equation:				
		(A - B)			
		$Recovery(\%) = \frac{(A - B)}{C} \times C$	100		
	where	G			
	A = the con	centration of folic acid in the spiked san	nple (µg/kg)		
	B = the nati	ural content of folic acid in the control sa	ample (µg/kg)		
	C = the spiked concentration of folic acid (μ g/kg)				
Reference	Journal of AOAC International, Vol 103, No 1, 2020- HPLC UV Estimation				
	of Folic acid in	fortified Rice and Wheat flour.			
Approved by	Scientific Pane	l on Methods of Sampling and Analysis			

Annexure-III

Inspiring Trust, Assuming Safe & Murthlear Rood Animy of Hauth and Family Watter, Coursenant of Inda	Determination of Cyanocoba	Determination of Cyanocobalamin (Vitamin B12) in Fortified Rice				
Method No.	FSSAI.FR.16.003.2022	Revision No. & Date	0.0			
Scope	 The scope of this method includes the quantitative analysis of Cyanocobalamin (Vitamin B12) at 0.5 ppb LOQ Level (with respect to the Sample) by using LC-MS/MS. Limit of Detection is 0.25 µg/kg with Respect to the Sample. Limit of Quantification is 0.5 µg/kg with Respect to the Sample. 					
Safety Precautions	Methanol is a flammable Liqu Sodium hydroxide is caustic sodium hydroxide can cause se or lungs. Prolonged or repeate with care.	c. Contact with very evere burns to the eye	high concentrations of es, skin, digestive system			
Principle	Cyanocobalamin (Vitamin B12) a water-soluble vitamin is extracted from the matrix using acetate buffer. The extract is cleaned up using a C18 cartridge and then separated by reverse phase chromatography and detected in a Tandem mass spectrometer and Multiple Reaction Monitoring (MRM).					
Apparatus/Instruments	 LC-MS/MS, system equipped with a quaternary gradient pump, an auto sampler (100 μL maximum loop capacity) and Mass spectrometer. Analytical Balance, -Suitable for weighing samples with accuracy up to 0.1 mg. Centrifuge, 6000 rpm, holding 50 ml tubes. Micro Pipettes Capable of delivering from 100 -1000 μl, 20 -200 μl 10 -100 μl. of liquids such as vitamin B12 Standards, Solvents, Buffers and Extracts. Incubator Column: 2.6 μm, C18 Column, 2.1 x 100 mm. 					
Materials and Reagents	 Homogenizer for sample grinding. Sodium acetate, LR Grade. Ammonium formate, MS Grade α-Amylase, Acetic acid, MS Grade. Methanol, LR Grade. Sodium hydroxide, LR Grade Cyanocobalamin (>98% pure) 					

	9 Cartaidas Datailas C18 (0 Å 50 um SDE Cartaidas 000 ma			
	 8. Cartridge Details: C18 60Å 50µm SPE Cartridge, 900 mg 9. Milli Q Water 			
Preparation of Reagents	Buffer preparation: Weigh accurately 20.5 g of Sodium acetate. Transfer it into 1000 mL volumetric flask. Sonicate to dissolve in about 100 mL water and make up to 1000 mL mark.			
	Mobile phase A: Weigh accurately1.261 g of Ammonium formate. Transfer it into 1000 ml volumetric Flask. Dissolve with Milli-Q Water and			
	make-up to 1000 ml. Sonicate for 15 minutes to mix well. Filter through 0.45 μ m filter.			
	Mobile phase B : Transfer 1000 ml methanol to mobile phase glass bottle and then sonicate for 15 minutes.			
	Diluent preparation: Transfer 500 mL methanol and 500 ml Milli Q Water into 1000 ml glass bottle. Mix well and sonicate for 15 minutes.			
Preparation of Standards	Preparation of stock solution for cyanocobalamin			
	(1000 mg/L (1000 ppm))			
	 Accurately weigh 10 mg (± 0.1 mg) of Cyanocobalamin Standard 3 (100%) 			
	2. Transfer to 10 ml amber colored volumetric Flask.			
	3. Add 2 ml of 0.1 N sodium hydroxide.			
	4. Vortex for 2 minutes.			
	5. Add Milli Q Water and make-up to 10 ml.			
	6. Vortex for 2 minutes.			
	7. Store the solution at 4 °C in the dark.			
	Preparation of intermediate standard solution – 1			
	(100 mg/L (100 ppm))			
	1. Pipette out 1.0 ml of stock solution.			
	 Transfer to a 10 ml amber colored volumetric flask containing 2 ml of Milli Q Water. 			
	3. Add diluent to make-up to 10 mL.			
	4. Vortex for 2 minutes.			
	Preparation of intermediate standard solution – 2			
	(10 mg/L (10 ppm))			
	1. Pipette out 1.0 mL of intermediate standard solution – 1.			
	 Transfer to a 10 ml amber colored volumetric flask containing 2 ml 			
	of Milli Q Water.			
	3. Add Diluent to make-up to 10 mL.			
	4. Vortex for 2 minutes.			
	Preparation of intermediate standard solution - 3			
	(1mg/L (1 ppm))			
	1. Pipette out 1.0 mL of intermediate standard solution -2 .			
	2. Transfer to a 10 ml amber colored volumetric flask containing 2 ml			

- 3. Add Diluent to make-up to 10 mL.
- 4. Vortex for 2 minutes.

Preparation of intermediate standard solution - 4 (100 μg/L (100 ppb))

- 1. Pipette out 1.0 ml of Intermediate Standard Solution -3.
- 2. Transfer to a 10 ml amber colored volumetric flask containing 2 ml of Milli Q Water.
- 3. Add diluent to make-up to 10 ml.
- 4. Vortex for 2 minutes.

Preparation of working standard solution

(5 µg/L 5 ppb)

- 1. Pipette out 0.5 ml of intermediate standard solution -4.
- 2. Transfer to 10 ml amber colored volumetric flask containing 2 ml of Milli Q water.
- 3.Add diluent for volume make-up to 10 ml.
- 4. Vortex for 2 minutes.

Preparation of bracketing standard solution

Standard Solution - 4 (5 ppb) shall be used for Bracketing Standard Solution

Preparation of calibration standard solutions

Use Intermediate Standard Solution - 4 for preparing Calibration Standard Solution as mentioned in below Table.

CAL. STANDAR D SOLUTION S	ISS - 4 (100 μg/L 100 ppb)	VOL. OF ISS – 4 (ml)	VOL. OF DILUEN T (ml)	FINAL VOL. (ml)	FINAL CONC. (μg/L ppb)
LS 6	100	2	8.00	10	20
LS 5	100	1	9.00	10	10
LS 4	100	0.5	9.50	10	5
LS 3	100	0.2	9.80	10	2
LS 2	100	0.1	9.90	10	1
LS 1	100	0.05	9.95	10	0.5

CAL : Calibration

ISS : Intermediate Standard Solution

VOL : Volume

LS : Linearity Solution

NOTE: Prepare calibration standard solutions freshly every day for the

	analysis.			
Preparation of Test	1. Take 1 kg of rice. Grind the whole sample to a fine powder using			
Samples	homogenizer.			
	2. Accurately weigh 10 g (± 0.5 g	Accurately weigh 10 g (\pm 0.5 g) of finely ground powder.		
	 Transfer into a 50 ml amber colored volumetric flask. Add 50 mg α-amylase and 20 ml of 0.25 M Sodium Acetate Buffer. Vortex for 5 minutes. Sonicate the solution for 20 minutes. 			
	7. Make-up to 50 ml using 0.25 M sodium acetate buffer.			
	8. Sonicate for 20 minutes.			
	9. Transfer the Sample Solution	nto the 50 ml Centrifuge tube		
	10. Shaking vigorously for 2 minu	tes using Vortex.		
	11. Centrifuge the sample solution	at 6000 rpm for 5 minutes at 4 °C.		
	12. Collect the supernatant layer f	ilter through 0.45 μm filter paper.		
	 13. Insert 900 mg C18 Solid Phase Extraction Cartridge onto the stopcock of the vacuum manifold. 14. Attach a 10 mL disposables barrel to the top of the Cartridge. 15. Condition the cartridge with 20 ml Methanol by allowing Methanol to gravity filter through the Cartridge. 			
	16. Rinse with 10 ml Milli Q wate	r.		
	17. Transfer 20 ml of filtered sample solution into the cartridge (Note: If necessary, apply enough vacuum, so that the sample will drip steadily through the cartridge).			
	18. Pass the sample solution throu			
	19. Rinse the cartridge with 5 ml of	of water		
	20. Discard eluent.			
	21. Air-Dry the cartridge by pullir observed.	21. Air-Dry the cartridge by pulling a vacuum until no more effluent is observed.		
	22. Close each stopcock.			
	23. Place 5 ml receiving Ria vial u	under the Cartridge.		
	24. Add 4 ml diluent to the cartrid	ge.		
	25. Open Stopcock.			
	26. Elute the solution into the Ria	Vial.		
	27. Transfer the collected sample solution in to the vial and use this for injecting into LC-MS/MS.			
Chromatographic	a) Instrument	LC-MS/MS Spectrometer.		
Conditions	b) Chromatographic Conditions	As detailed in below Table*		
	Detector	Mass Detector		
	Column	2.6 µm, C18 Column, 2.1 x 100		
		,,,,,,		

	mm
Run time	7 min
Column Temperature	35°C
Flow rate	0.25 ml/min
Injection Volume	20 µl
Mobile Phase A	20 mM Ammonium Formate in Water
Mobile Phase B	Methanol
Buffer	Sodium Acetate
Diluent	Milli Q Water
Source Temperature	140°C
Desolvation Temperature	300°C
MRM (QUANTIFIER)	678.29 > 359.17
MRM (QUALIFIER)	678.29 > 665.00
CE	26 V
CV	35 V
Source	ESI +ve

Gradient Program

TIME (min)	FLOW (ml/Min)	%A	%B
0.00	0.25	90	10
2.00	0.25	90	10
4.00	0.25	10	90
5.00	0.25	90	10
7.00	0.25	90	10

Method of Analysis	Injec	Injection sequence			
		SL.NO.	NAME OF INJECTIONS	NUMBER OF INJECTIONS	
		1	Blank	2	
		2	Standard Solution - 4 (100%)	6	
		3	Blank	2	
		4	Linearity Solution (LS) - 1	1	

	5	Linearity Solution (LS) - 2	1	
	6	Linearity Solution (LS) - 3	1	
	7	Linearity Solution (LS) - 4	1	
	8	Linearity Solution (LS) - 5	1	
	9	Linearity Solution (LS) - 6	1	
	10	Blank	2	
	11	Sample Solution	1	
	12	Blank	2	
	13	Bracketing Standard Solution	1	
	Total Inje	ections	22	
Calculation with units of				
expression				
	Cyanocobal a	$mine(\frac{\mu g}{\Delta}) = \frac{C \times V1 \times V3}{\Delta}$		
		<i>Cyanocobal amine</i> $(\frac{\mu g}{kg}) = \frac{C \times V1 \times V3}{W \times V2}$		
	Where: C = Instrument concentration (µg/kg (ppb)) V1 = Volume make-up (ml) V2 = Volume of filtrate loaded on Cartridge (ml) V3 = Volume of diluent added for extract the Vitamin B12 from cartridge (ml) W = Sample weight (g)			
	a) Carry out	a regression analysis and calculate	e Regression coeffic	ient
	· · ·	e calibration standards by fitting th		
	regression curve, including zero as the response for the reagent blank.			
		and LOQ are determined by consi	idering the S/N of 3	and
	,	tively, for the Cyanocobalamin sig	e	
	c) Determine	the recovery of Cyanocobalamin	by the external spik	aing
		three different spike levels (0.5, 2	2.0, 5.0 and 10.0 μ g/l	kg)
	in six repli			
		the recovery value using the follow $(A - B)$	wing equation:	
	Recovery	$(\%) = \frac{(\mathrm{A} - \mathrm{B})}{\mathrm{C}} \times 100$		
	Where:			
		ntration of Vitamin B12 in the spi		
		l content of Vitamin B12 in the co		g)
	-	l concentration of Vitamin B12 (µ	,	
Reference	AOAC 2011.10 - Single Laboratory Validation of AOAC Official method			

	2011.10 for Vitamin B12 in Indian infant and Pediatric formulas and Adult Nutritionals.
Approved by	Scientific Panel on Methods of Sampling and Analysis